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Shear-Induced Melting and Reentrant Positional 
Ordering in a System of Spherical Particles 1 

S. Hess 2 

Computer simulations of dense systems of soft spheres subjected to a shear flow 
show not only the phenomena of shear-induced melting--transition from a 
crystalline to an amorphous state but, at high shear rates, a second non- 
equilibrium phase transition to a new positionally ordered state. The particles 
form strings parallel to the stream lines; the strings, in turn, are arranged in a 
hexagonal pattern. Simulation data on the rheological properties, non-New- 
tonian viscosity, shear dilatancy, and stress growth and values for the shear 
moduli are presented; some theoretical ideas for the explanation of these 
phenomena are discussed. 

KEY WORDS: nonequilibrium molecular dynamics; nonequilibrium 
positional ordering; nonlinear flow behavior; rheological properties; shear 
growth; shear-induced melting; shear moduli. 

1. I N T R O D U C T I O N  

The application of a shear to a solid can lead to the destruction of the 
crystalline order even under isothermal conditions. This shear-induced 
melting has recently been studied in colloidal cr3fstals [ 1 ] with the help of 
light-scattering techniques and in nonequilibrium molecular dynamics 
simulations [2] for spherical particles. There are indications [1, 2] that the 
shear-induced melting does not proceed in one step if the shear rate is 
increased. In a certain range of shear rates, however, the system behaves as 
a dense fluid (amorphous system) which has "forgotten" that it can exist in 
a crystalline phase under equilibrium conditions. Thus it came as a surprise 
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(at least for the present author) that simple fluids--as studied in molecular 
dynamic~bu i ld  up a (partial) positional order at high shear rates. The 
formation of planes parallel to the stream lines was noticed for both Len- 
nard-Jones [3] and soft-sphere fluids [4]. The even more intriguing for- 
mation of strings of particles (parallel to the stream lines) which, in turn, 
arrange themselves in a hexagonal pattern has recently been observed for 
hard spheres [5] and, independently, for soft spheres [6, 7], It should be 
mentioned that a somewhat similar reentrant positional ordering at high 
shear rates had previously been discovered experimentally for dense sus- 
pensions [8]. 

2. NONEQUILIBRIUM MOLECULAR DYNAMICS 

In the following a fluid composed of "soft spheres" is considered, i.e., 
the binary interaction potential is 

~(r )  = ~(s/r)12 (1) 

cut off at r/s = 2.5. 
As usual, reduced variables are introduced with the help of the charac- 

teristic energy e, the characteristic length s, and the mass m of a particle; 
e.g. densities n are expressed in units of s 3, temperature T in units of ek~ 
(ka is the Boltzmann constant), times in units of to=s(m/~)  1/2. For any 
power-law potential, the thermodynamic properties associated with the 
interaction potential do not depend on T and n separately. In the case of 
the potential given by Eq. (1), the relevant states variable is X =  (4T) - l /nn  
[9]. In the simulations, the temperature T =  0.25 was chosen, thus X =  n; T 
is kept constant by rescaling the magnitude of the (peculiar) velocities of 
the particles. At this temperature, a fluid with n~0.82 coexists with a fcc 
solid with a density n=0.84 according to Monte Carlo calculations [9]. 
The present studies were conducted for n = 0.84, i.e., at a "solid" density. 
The volume V of the system is determined by the prescribed number den- 
sity n and the number of particles N; here the values N =  2 • 63= 432 and 
N =  2 x 43 = 128 were chosen. Periodic boundary conditions are used. The 
equations of motion are integrated with a fifth-order predictor-corrector 
method (Gear). 

In the nonequilibrium MD (NEMD), a plane Couette flow with the 
velocity field 

Vx = 7Y, 

and the constant shear rate 

vy=0, vz=0 (2) 

avx (3) 
7 -  ~3y 
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Fig. 1. Projections of the positions of the particles on walls parallel to the shear plane (x-y 
plane) and perpendicular to the flow velocity (y-z plane), respectively. The snapshot pictures 
were taken in the unsheared bcc phase (I), at an intermediate shear rate (II), and at a high 
shear rate in the string-ordered phase (III). 
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is simulated by controlling the velocity gradient tensor. The method is 
essentially equivalent to one described by Evans [10]. Of course, in the 
presence of a flow, the periodic boundary conditions have to be modified 
appropriately. The time steps are of length 0.01 in most cases; for high 
shear rates shorter time steps were required. The program has previously 
been tested for nonequilibrium studies in Lennard-Jones and soft-sphere 
systems at other state points [4, 6, 11 13]. 

3. THE N O N E Q U I L I B R I U M  PHASE TRANSITIONS 

Next, consider Fig. 1 for a demonstration of the shear-induced melting 
and the reentrant positional ordering in the 432-particle system. The 
"snapshot" pictures on the left-hand side in of Fig. 1 are projections of the 
positions of the particles in the volume V on the x - y  plane (shear plane); 
those on the right-hand side are projections on the z-y plane, which is per- 
pendicular to the flow direction, i.e., one "looks" upstream or downstream. 
The first two graphs (marked I) show the system in the initial bcc solid 
phase. The snapshot was taken 500 time steps after the start; no shear has 
been turned on yet. At the density n=0.84  the bcc phase seems to be 
metastable. The application of a (small) shear destroys the crystalline 
order: shear-induced melting. The graphs marked II in the middle of Fig. 1 
show the state of the system flowing with an intermediate shear rate 7 = 0.5; 
the appearance is fluid-like, although the picture on right shows some 
indications of tilted layers. The graphs labeled III are for the shear rate 

= 2.0; the system had been subjected to this shear rate for 1600 time steps. 
The projection onto the y z plane reveals that the particles are moving 
(cooperatively) in strings which, in turn, try to maximize their distances. 
This gives rise to the hexagonal pattern. The sides of the hexagons are 
tilted with respect to the periodicity box; for this reason one does not see 
the ordering in the shear plane. In the following, this new phase is referred 
to as the "string-ordered state." 

The same two nonequilibrium phase transitions were observed in the 
N =  128 particle system. Since the thermophysical properties analyzed at 
three shear rates 7 were quite similar for N =  432 and N =  128, most runs 
(at 12 values of ~) were performed for the smaller system. 

4. COMPARISON BETWEEN THE SOLID AND THE FLUID STATE 

To investigate the difference between the (metastable) bcc phase and 
the amorphous fluid after shear-induced melting, the mean square dis- 
placement R 2 was determined for both cases. In Fig. 2, �89 2 is plotted as a 
function of the time t (for the N =  128-particle system). Curve 1 is for the 
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Fig. 2. One-third of the mean square displacement R 2 as 
function of the time t. Curves 1 and 2 pertain to the bcc phase and 
the amorphous phase after shear-induced melting, respectively. 

bcc phase; t = 0 correponds to 200 time steps after the initial start of the 
simulation. Curve 2 pertains to the case where the system has undergone a 
shear-induced melting. More  specifically, a flow with the shear rate 
7=0 .125  was going on for 1000 time steps before the shear rate was 
switched off and the calculation of R 2 was started. Clearly, there is a 
marked difference between both cases. The saturat ion of R 2 for large times 
and the growth of  R 2 propor t iona l  to t are typical for a solid and a fluid, 
respectively. 

Of  course, there are also differences in the thermophyscial  properties. 
In Table I, the potential  contr ibut ions to the pressure P, the com- 
pressibility modulus  K, the shear (isotropic) modulus  G, the cubic shear 
modulus  G~, and the square of the Einstein frequency are listed. All quan-  
tities are evaIuated as N-particle averages (and they have been averaged 
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Table I. The Potential Contr ibut ions  to the Thermodynamic  Funct ions P, K, G, and G c and 
the Square of the Einstein Frequency co E for the bcc Phase and the A m o r p h o u s  Fluid Phase 

After Shear-Induced Melting 

P K G G c co~ 

bcc 3.82 19.09 6.87 - 6.56 81.8 

Fluid 4.30 21.51 7.74 - 0.16 95.2 

over 200 time steps) with the help of formulas which are standard except 
for Gc [14]. 

The shear modulus G, in particular, is given by 

G = n ~ A(r~) (4) 
i ~ j  

where n is recalled as the number density, r U = ri - rj is the difference in the 
position vectors of particles i and j, and the quantity A(r) stands for 

A(r) = 1 A r - 2 ( r 4 q ~ ' )  ' (5) 
J U  

The prime denotes the derivative with respect to r. The cubic modulus Gc is 
given by an expression analogous to Eq. (4), but with A replaced by 

Ao(r) = 5  H4(f ) r3(r_,cb,), (6) 

H 4 ( f  ) = )~4 + j34 nt - 24 __ 3 / 5  (7) 

is a cubic harmonic. In Eq. (7))~, 3), and ~ are the components of the unit 
vector f with respect to the coordinate axes, which are assumed to be 
parallel to the cubic axes. For a system with cubic symmetry the Voight 
elasticity coefficients cie are related to the quantities K, B, and Gc by 

K 4 4 
C l 1 = C 2 2 = C 3 3  = + ~ G + ~ G c  (8) 

K 2 2 c12=cB=c23 = --~ G - ~  Go (9) 

2 
C44 = C55 = C66 = G - -  -~ G c (lo) 
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For an isotropic (fluid or amorphous) system K and G are nonzero, but 

1 
G c = ~ ( e l l  - -  c 1 2  ) - -  c 4 4  (11) 

vanishes. Thus G~ is an excellent indicator for a crystalline order (of cubic 
symmetry) (cf. Table I). 

Incidentally, for a power-law potential, the potential contributions to 
P, K, and G are not independent; e.g., one has 

9 G=~P (12) 

Similarly K =  5P and P = 4nU for the r - 12 potential given by Eq. (1); U is 
the potential contribution to the internal energy per particle. The kinetic 
contributions to P, K, and G are nT; Gc has no kinetic part. 

5. RHEOLOGICAL BEHAVIOR AND SHEAR-INDUCED ORDERING 

5.1. Pressure Tensor, Viscosity 

The pressure tensor P of a system of N spherical particles is the sum of 
the kinetic and the potential parts 

p = pkin + ppnt (13) 

which in a simulation, in contradistinction to a real experiment, can be 
recorded separately. The standard formulas used for the evaluation are 

pkin ---= V-1 2 cici (14) 
i 

ppot= V 1 1 2 2  r'JF~ (15) 
Z i ~ j  

Here, V is the volume; e i is the peculiar velocity of particle i, i.e., its 
velocity with respect to the average flow velocity; and F~=F(rU),  with 
F(r) = -0~/~3r is the foce between particle i and particle j. 

In general, the tensor P can be decomposed into an isotropic part P& 
where 6 is the unit tensor, and an symmetric traceless (anisotropic) part p, 
which vanishes in thermal equilibrium. The "scalar" part P of the pressure 
is one-third of the trace of P; the quantity P listed in Table I corresponds 
to ppot as inferred from Eq. (15). 
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For  the plane Couette symmetry considered here Ecf. Eqs. (2) and 
(3)], the non-Newtonian viscosity r/= ~/(~) is defined by 

p~y = - t / (y)y  (16) 

In the nonlinear flow regime, the scalar pressure P = 1/3(Pxx + Pyy + Pzz) 
also depends on the shear rate 7, and there are normal pressure differences 
[15, 16]. Here the attention is focused on the non-Newtonian viscosity, 
Eq. (16). 

In Fig. 3 the magnitude of Pxy is plotted as a function of the shear rate 
7; the squares and the circles mark the potential and 10 times the kinetic 
contributions to the x y component of the pressure tensor. The lines 
between the data points are intended as a guide for the eye. Notice the 
break in the curve for Pxy p~ and the change in the slope at a shear rate of 
about 7 = 2 associated with the flow-induced transition into the string- 
ordered state discussed above. The data were averaged over 2000 to 4000 
time steps; for details see Table II. Strong fluctuations were observed for 
7 = 2; the three different data points stem from consecutive runs of at least 
2000 time steps. 

2.0 

1.0 

0.5 

0,2 

0.1 

I Pxyl  

pot 

lOx (Kin) 

shear rate /~ 

0ol 0,2 0.5 1.0 2,0 

Fig. 3. The magni tude of the x ~  component  Pxy of the pressure 
tensor as a function of the shear rate y. The squares and the circles 
mark  the potential and (10 times) the kinetic contributions, 
respectively. The lines are intended as a giode for the eye. 
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from entropy production t 1 ~  

o from Pxy 

shear rate ~ "  

0.2 0,5 1.0 2,0 

Fig. 4. The non-Newtonian viscosity ~/ as function of the shear 
rate ~?. The cirles are for data  obtained from Pxy; the asterisks are 
inferred from the entropy production. 

The non-Newtonian viscosity r/(7) is displayed in Fig. 4. The circles are 
obtained from the sum of the kinetic and potential contributions to Pxy; cf. 
Eq. (16). The crosses are inferred from the entropy production S (per par- 
-ticle) according to 

S =  (nT) -1 r/(7)7 2 (17) 

In the simulation, the quantity S is essentially evaluated from the heat 
which is extracted from the system in order to keep the temperature con- 
stant. Clearly, there is an excellent agreement between both methods unless 
the shear rate 7 is too small, where statistical fluctuations affect the second 
method more strongly. Again, notice the break in the curve and the change 
in the slope at about 7 = 2. 

The viscosity r/ is strongly non-Newtonian even for 7 < 2, where the 
system is in the amorphous fluid state. In fact, it is not possible to deter- 
mine a Newtonian limit for t/ because there is no region where Pxy 
increases proportionally to 7 in the range of 7 studied here. This is in con- 
tradistinction to simulations performed for smaller densities [6., 16, 17]. 
The previously tested functional from r/(7)=r/(0)(1-a171/2) with a coef- 
ficient al does not fit the data. In the range 0.1 < 7 <  1.5 one finds, 
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approximately, - p x y ~ 7  2/3 and, consequently, q ~7  1/3. In the string- 
ordered state (1 .8<7<3 .5 )  -p~y decreases like 7 -~, here t /~7 2; this 
implies S ~ c o n s t  [cf. Eq. (17)]. Since no theoretical foundation can be 
given for these power laws, they should be understood just as "empirical" 
expressions. However, the main points to be made in this section are 
clearly revealed by these considerations: there is a strong non-Newtonian 
shear thinning flow behavior in the amorphous fluid state, and the (first 
order) nonequilibrium phase transition to the string-ordered state at high 
shear rates drastically affects the rheological properties of a fluid a solid 
densities. 

For  dimensional reasons, the dependence of t / (and of other quantities) 
on y must be via ~ ,  where ~ is a characteristic relaxation time, e.g., the 
ratio between the viscosity t/New and the shear modulus G in the Newtonian 
limit. It has been noticed in simulations for soft-sphere and Lennard-Jones 
systems at other state points that ~ is somwhat larger (by a factor about 2) 
but of the same order of magnitude as the reciprocal Einstein frequency 
~OE 1 in equilibrium fluids. With G~7.7  and t/New > 2.3 one has r >0.3 for 
the present case; on the other hand, one finds toe -1 ~0.1 and, consequently, 
rco E > 3.0. This is in accord with an extrapolation of an empirical formula 
for the density dependence of t/New proposed by Ashurst and Hoover [17],  
which yields t/Ne w = 2.9 for n--0.84. This leads to ~ ~0.35 and rcoE~3.5. 

The potential contribution to the scalar part P = 1/3(Pxx + Py~ + P~z) 
of the pressure tensor increases with increasing shear rate: shear dilatancy. 
Due to the relation given by Eq. (12), the dependence of P on y can be 
inferred from that of the shear modulus G, discussed next. The kinetic con- 
tribution to P is constant since the density n and the temperature T are 
kept constant. 

5.2. Shear Moduli  

In Fig. 5, the isotropic and the cubic shear moduli G and Go are dis- 
played as functions of the shear rate. These coefficients characterize the 
elastic behavior for a small volume conserving deformation; Go is 
intimately linked with the cubic symmetry (cf. Eqs. 4-7), i.e., it vanishes in 
anisotropic fluid in equilibrium. In the ordinary fluid phase, G increases 
with increasing shear rate. In the string-ordered state, there is a drop to a 
somewhat smaller value and G seems to stay constant. Due to G ~ P ,  this 
reflects the fact that the pressure stays constant over a certain range of 
values for the shear rate 7. Such a behavior is indicative of a first-order 
phase transition. 

The cubic shear modulus Go shows a small increase at small shear 
rates (7 < 1), then a steep rise to larger positive values for 7 1> 2. Notice that 
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Fig. 5. The potential contribution to the "isotropic" shear 
modulus G (filled circles) and the "cubic" shear modulus Gc 
(squares) as a function of the shear rate % 

the magnitude of Go in the flow-induced ordered state is about as large as 
in the equilibrium bcc state; the sign, however, is different (in both the bcc 
and the fcc phase, Go is negative). This can be understood as follows. The 
radial part of the quantity Ao [cf. Eq. (16)], needed for the evaluation of 
Go, is positive and proportional to r -~2 in the present case. Thus the sign 
of Gc is determined by the sign of the cubic harmonic H4(~) [cf. Eq. (7)], 
where ~ is the unit vector pointing from a reference atom to the first 
neighbors. In the solid bcc and fcc phases, these are along the body or face 
diagonals where H4(~) is negative. In the flow-induced ordered state (see 
Fig. 1 ), there is a high chance to find nearest neighbors along the x direc- 
tion and also along the y and z directions where H4(~ ) is positive. Thus, Gc 
is an excellent indicator for a "bond directional" order [11]. Notice, 
however, that the flow-induced string-ordered state does not have a cubic 
symmetry. 
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5.3. Stress Growth 

The formation of a new phase takes time. This also applies to the non- 
equilibrium phase discussed here, and it is refleted in the stress growth cur- 
ves displayed in Fig. 6. The magnitude of (the potential contribution to) Pxy 
is plotted as a function of the time after the time t = 0 where the shear rates 
7 = 0.4, 7 = 1.8, and 7 = 3.2 were switched on; the three curves are labeled 
by these values for 7- All three runs started from the same amorphous state, 
where the system had undergone a shear flow with 7 = 0.125 for 1000 time 
steps. For all shear rates, there is a fast increase in Pxy over the time inter- 
val ts corresponding to 200 time steps. For 7 = 0.4, the final value is 
practically reached after this time. Since the data are time averaged over 
100 time steps only, the curves show statistical fluctuations. For 7 = 3.2, 
there is a pronounced stress overshoot. The drop in Pxy from t = 2 to about 
t = 10 is associated with the formation of the flow-induced ordered state. 
The final values ofpxy are about the same for ~ = 0.4 and 7 = 3.2 (cf. Fig. 3). 
At the intermediate value 7 = 1.8, one still observes a stress overshoot, but 
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Fig. 6. Stress growth curves for the shear rates 7 - 0 . 4  
(dashed~lotted line), 7 -1 .8  (dashed line), and 7=3.2 
(solid line). Notice the stress overshoot for the two larger 
values of ?. 



670 Hess 

the decay of Pxy to its final value is much slower since it is close to the 
critical value where the transition to the string-ordered state sets in. 

The hexagonal pattern of the string-ordered state must fit into the 
periodicity box. Thus the time of formation of the new phase is expected to 
depend on the size of the system, i.e., on N, even when thermophysical 
properties in the stationary state are practically independent of N. This has 
indeed been noticed in a comparison of the N =  432- and N =  128-particle 
simulations for y = 2; for y ~< t there are only small differences. 

5.4. Further Observations on the String-Ordered State 

In the nonlinear flow regime, one has normal pressure differences, 
which for the present geometry are best characterized by the two quantities 
p_ = 1/2(Pxx- Pyy) and Po = 1/2[Pzz-  1/2(Pxx + Pyy)]. Together with 
p+ =Pxy, these are the three of the five components of the symmetric 
traceless pressure tensor which are nonzero, in general, for the plane 
Couette symmetry [6, 12, 16]. In the simulations discussed here, the 
statistical accurracy is not good enough to present data on the quantities 
p and P0, which are typically at least one order of magnitude smaller than 
p+.  However, the qualitative observation that the potential contributions 
to p and Po are negative in the amorphous fluid state (in accord with data 
obtained at lower densities) but positive in the string-ordered state deserves 
mentioning. Furthermore, it is remarkable that the Couette symmetry is 
broken in the new phase; in particular, Pzp becomes nonzero. This is 
probably associated with squeezing the hexagonal pattern (cf. Fig. 1) into a 
square determined by the periodicity box. 

A technical detail may be worth mentioning. In the string-ordered 
state, it is not possible to change the shear rate without drastically decreas- 
ing the length of the time steps At. However, the same values of the shear 
rate can be reached without any problem (i.e., with At=0.01) from the 
amorphous fluid state (cf. Fig. 6). 

6. CONCLUDING REMARKS 

The nonequilibrium molecular dynamics simulations for a soft-sphere 
system at a solid density demonstrate that (at least) two nonequilibrium 
phase transitions occur with increasing shear rate: first, the shear-induced 
melting and, second, the formation of a reentrant positionally ordered state 
where strings of particles are arranged in a hexagonal pattern. The 
theoretical treatment of these phase transitions and of the complex 
rheological behavior of such a system is quite a challenge. 

The problem of shear-induced melting and the influence of a viscous 
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flow on the phase transition fluid-solid has recently been studied [ 18 ] by a 
theoretical approach where the two phases are distinguished by a bond- 
orientational order parameter tensor (of rank 4). An equation of change for 
this quantity was derived from a generalized Fokker-Planck equation 
where viscous torques on the bond direction were taken into account. 

The transition from the fluid to the string-ordered state poses even 
more challenges for a theoretical explanation. As a first step it may be 
useful to exploit formal analogies between the potential contribution to the 
symmetric traceless friction pressure tensor p of a simple fluid and the 
second-rank alignment tensor a of a nematic liquid crystal where a shear- 
induced phase transition has been studied before [19]. The first quantity, 
to some extent, specifies the bond-directional orientation, i.e., the preferen- 
tial orientation of a vector joining two correlated spherical particles; the 
latter one describes the orientation of the long axis of a molecule. For the 
characterization of the string-ordered phase, in addition to the (second- 
rank) pressure tensor, however, a further order parameter is needed to 
specify the hexagonal packing of the strings, which is similar to the order 
within one layer of a liquid crystal of type smectic B. 

Finally, it should be stressed that the soft-sphere system, as academic 
as it seems at first glance, shows many nonequilibrium phenomena found 
in dense suspensions of spherical particles. 

REFERENCES 

1. B. J. Ackerson and N. A. Clark, Physica 118A:221 (1983). 
2. D. J. Evans, Phys. Rev. A25:2788 (1981). 
3. D. M. Heyes, J. J. Kim, C. J. Montrose, and T. A. Litovitz, J. Chem. Phys. 73:3987 (1980). 
4. S. Hess, Proc. Colloidal Crystals (Les Houches, 1984); J. de Physique 46:C3-191 (1985). 
5. J. J. Erpenbeck, Phys. Rev. Lett. 52:1333 (1984). 
6. S. Hess, JMTA. 
7. H. J. M. Hanley, Private communication. 
8. R. L. Hoffmann, Trans. Soc. Rheol. 16:155 (1972). 
9. W. G. Hoover e. a., J. Chem. Phys. 52:493 (1970). 

I0. D. J. Evans, Mol. Phys. 37:1745 (1979). 
11. S. Hess, Physica 127A:509 (1984). 
12. S. Hess, H. J. M. Hanley, and N. Herdegen, Phys. Lett. 105A:238 (1984). 
13. S. Hess, Phys. Lett. 105A:113 (1984). 
14. S. Hess, In press. 
15. D. J. Evans, H. J. M. Hanley, and S. Hess, Phys. Today 37:26 (1984). 
16. S. Hess and H. J. M. Hanley, Int. J. Thermophys. 4:77 (1983). 
17. W. T. Ashurst and W. G. Hoover, Phys. Rev. Al1:658 (1975); W. G. Hoover, Physica 

l 1 8 A : l l l  (1983). 
18. N. Herdegen, Influence of a Shear Flow on the  Phase Transition Liquid-Solid, Thesis 

(University of Erlangen-Niirnberg, 1984). 
19. S. Hess, Z. Naturforsch. 31a:1507 (1976). 


